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Enhancement of Activated Decay of 
Metastable States by Resonant Pumping 

V. I. M e l ' n i k o v  I 

We consider the effect of a high-frequency pumping g cos cot on the escape rate 
of a classical underdamped Brownian particle out of a deep potential well. The 
energy dependence of the oscillation frequency co(E) is assumed to be weak on 
the scale of thermal energy, co~-(0) T ~  co(0) 7"/1/o ~ co(0)[cok(0) is the derivative 
of co(E) at E =  0, V0 is the barrier height, V o >> T]. The quadratic-in-~ contribu- 
tion to the decay rate is calculated in two different regimes: (1) for the case of 
resonance of the pumping frequency with the nth harmonic of the internal 
motion at an energy ~, when co =nco(~); (2) for a rollout region of the basic 
resonance near the bottom of the potential well, when ]co-co(0)[ ~ 7 and 7 is 
the damping coefficient. In the latter case the absorption spectrum and the 
enhancement of the decay rate are calculated as functions of two reduced 
parameters, the anharmonicity of the potential, v=-co'e(O) T/7, and the 
resonance mismatch, 6=-[co-co(O)]~7. It is shown that the effect of the 
pumping increases with diminishing Ivl and at small v is proportional to v -z. 
In this regime, the dependence on 6 is stepwise: the pumping contribution is 
large for v6 > 0 and small for v6 < 0. In the frame of our theory, the decay rate 
is invariant against the simultaneous alternation of the signs of 6 and v. The 
spectrum of the energy absorption has the standard Lorentzian shape in the 
absence of anharmonicity, v=0 ,  and with increasing of Ivl shifts and widens 
retaining its bell-shape form. 

KEY WORDS: Metastable states; activated decay; resonant pumping; energy 
diffusion; Fokker-Planck equation. 

1. I N T R O D U C T I O N  

M e t a s t a b l e  s t a t e s  in  d e e p  p o t e n t i a l  m i n i m a  h a v e  e x p o n e n t i a l l y  l o n g  life- 
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numerous papers (see, e.g., refs. 1 and 2). Experimentally most promising 
systems for observation of these processes are Josephson junctions/3-5) In 
principle, a Josepson junction works as a nonlinear element of an electrical 
network. In this function it can be more easily influenced externally than, 
e.g., chemical systems. The low-lying states of a Josephson junction are 
described by small oscillations of a particle near the bottom of a potential 
well. If the damping is weak, one expects that behavior of a Josepson 
junction under high-frequency pumping will be sensitive to the matching 
between the frequency of the pumping force and the frequency of an 
internal motion in the junction. This phenomenon was observed experi- 
mentally. (6) Later it was investigated in detail both experimentally and via 
numerical simulations/v) Analytical approaches to the solution of this 
problem were developed for the classical (8) and quantum ~9) cases. Still, this 
problem lacks an exhaustive analytic consideration. For the textbook 
problem of an oscillator driven by a weak harmonic force at least one 
final answer is well known: the absorption of energy as a function of the 
pumping frequency has Lorentzian shape around the oscillator frequency 
with a width proportional to the damping coefficient. Anharmonicity of the 
oscillator only becomes important if we consider an ensemble of oscillators 
at a sufficiently high temperature, when the Spread of oscillator frequencies, 
caused by the thermal spread of the energies, is comparable to the width 
of the resonance curve. 

The aim of this article is to demonstrate that, in accord with the 
previous findings, (7 9) in the case of a metastable state pumped by a high- 
frequency force one encounters a qualitatively new physical situation. In 
contrast to the absorption of energy, to which contribute mainly particles 
at the bottom of the well, the decay rate is proportional to the magnitude 
of the distribution function at the barrier top. To reach this energy starting 
from the particle reservoir at the bottom of the well, a particle must pass 
through the whole interval of intermediate energies. In the absence of exter- 
nal perturbation, the distribution function is nonequilibrium at the energies 
close to the top of the barrier due to the escapes of particles across the 
barrier. In order of magnitude, the typical width of this energy region never 
exceeds the temperature T. At lower energies the particle distribution 
retains its Boltzmann shape, so that for a well of a depth Vo one obtains 
the well-known Arrhenius law, 1/~ oc exp(-Vo/T) ,  where ~ is the lifetime 
of the metastable state. A high-frequency pumping g cos cot perturbs the 
particle distribution and in this way affects the decay rate. Below we 
consider an underdamped particle which, neglecting dissipation and 
thermal noise, oscillates in the well with a frequency co(E) dependent on its 
energy E. Under these conditions the absorption of energy as a function of 
the pumping frequency co has a resonant shape with a width of order 
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l eo-  co(0)] ~ ?, where y is the friction coefficient. The energy dependence of 
the oscillation frequency co(E) contributes to widening and shifting of the 
resonant curve in accord with the spread of oscillation frequencies due to 
the thermal broadening of the energies, co (E) -co (0 )~co} (0 )T ,  where 
co~(0) is the derivative of co(E) at E = 0 .  In order of magnitude, 
~o'e(O) ~ co(O)/Vo, so that co~(O) T ~  co(O) T/Vo ~ co(O). 

We will consider separately the case of resonance of the pumping with 
an nth harmonic at a certain energy E, when 

and the case of basic resonance near the bottom of the well, 

[co-co(O)l ~ ~  

In the latter case, our problem will be completely specified by the two 
dimensionless parameters 

co - co(0) 
_ - -  ( 1 )  

? 

Tco)v(0) 
v = (2) 

where 6 determines the reduced mismatch of the resonance, and v gives the 
reduced anharmonicity of the potential. In other words, v determines the 
interval of energies perturbed by pumping, e ,-~ T/]vl. We consider the case 
when effects of the pumping on the dynamics of a particle with an energy 
near the barrier top, e ~ V0, can be neglected. In this case the particle 
distribution returns to its Boltzmann shape at the energies above the per- 
turbed region. The effect of pumping is manifest then in a change of the 
magnitude of the Boltzmann function. It is obvious that perturbation of the 
particle distribution well below the barrier top has no direct influence on 
the escape processes. This allows us to split the solution of our problem 
into two stages. In the first stage we calculate the change of the particle 
distribution caused by pumping. In the second stage we should use the 
Boltzmann function for the energies above the pumping-perturbed region, 
e>> T/[vl, but well below the barrier top, Vo-e>> T, as a boundary condi- 
tion for the solution at the barrier top, when IV o - e l  ~ T. Fortunately, we 
do not have to work through this procedure explicitly, since the linearity 
of the equation for the distribution function allows us to identify the 
relative change of the decay rate with the relative change of the distribution 
function in the region of intermediate energies, e >> T/lv], Vo - e >> T. 

822/70/1-2-6 
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The absorption spectrum is determined by particles with thermal 
energies, as the number of particles drops exponentially with the energy. In 
contrast, the flux of particles toward the top of the barrier is affected by 
any perturbations of the distribution function. Therefore, all energies per- 
turbed by the external force contribute practically with equal weight to the 
change of the decay rate, though the distribution function may change in 
the actual interval of the energy by several orders of magnitude. As a con- 
sequence, it should be expected that the contribution of a high-frequency 
pumping to the decay rate will be slowly dependent on the pumping fre- 
quency as long as it is in resonance with oscillations at a certain energy in 
the well. At the same time, the pumping-enhanced increase in the decay 
rate is the greater in magnitude, the smaller the anharmonicity of the 
potential. For  typical potentials, co(E)< co(0). In this case the resonance 
conditions will be satisfied for co <co(0). Correspondingly, in a narrow 
region, Lco-co(0)L "-~ 7, the pumping contribution to the decay rate drops 
sharply on going over from a resonant to a nonresonant situation. This 
qualitative feature of the considered phenomenon was earlier investigated 
with the use of numerical simulations (7) or analytic calculations. (s'9) 

The purpose of this article is the derivation of an exact solution for the 
quadratic-in-g contribution to the decay rate in two qualitatively different 
regimes. First, a resonance with an nth harmonic of the particle motion in 
the well is considered. The enhancement of the decay rate by the pumping 
is then obtained as a sum over all harmonics. A more detailed considera- 
tion is given for a rolloff region of the resonance, when the resonance 
mismatch for small oscillations is on the order of the damping coefficient, 
hco-co(0)l ~ ,  i.e., 16[ ~ 1. For  a weak anharmonicity, Iv[ ~ 1, the solution 
obtained describes a sharp cutoff of the pumping effects with the transition 
into a nonresonant regime, v6 < 0, and a rather slow dependence on 6 in 
the resonant regime, v3 > 0, 181 "> 1, where the relative magnitude of the 
effect is roughly given by IvL-1. In the regime of a weak friction, 7 ~ co, our 
results can easily be generalized to calculation of the pumping effect in the 
full region of frequencies, co < co(0). 

2. E N E R G Y - A N G L E  V A R I A B L E S  

Our starting point is the Fokker-Planck equation 

where F(p, x, t) is the distribution function, x, p, and m are, respectively, 
the coordinate, momentum, and mass of a particle, V(x) is a potential of 
finite depth with the minimal value V = 0 at x = O, ~ cos e)t is an external 
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tbrce, and 7 is the damping coefficient. The temperature T is considered to 
be small compared to the scale of the potential energy, T~ V(x), so that 
we can use a harmonic approximation near the bottom of the well. In this 
case the normalized equilibrium function is given by 

F 1 
o(p ,x)=2rcco(O)Texp(-E ) (4) 

where E is the total energy, 
p2 

F~ = ~ + V(x) (5) 

and co(0) is the frequency of small oscillations, 

09(0) =-- [V"(O)/m] 1/2 

The motion in the well is assumed to be underdamped, in other words, 
7 is small compared to co, which is close to the frequency co(0). Due to 
anharmonicity of the potential, only energies near the bottom of the well 
are perturbed by pumping. This assumption simplifies our task substan- 
tially, since under these conditions the distribution function perturbed by 
the pumping in a certain interval of energies recovers its Boltzmann shape 
at higher energies. The relative change of its magnitude gives then directly 
the relative change of the decay rate. In the absence of an external force, 
friction, and thermal noise, the motion of a particle in a potential well 
is completely specified by the conserved energy E and the angle 
(p(t) = co(E) t + ~o o. As long as they are weak, an external force, damping, 
and thermal noise cause slow changes in the energy E and the phase q~o. 
In order to write down the Fokker-Planck equation in terms of these 
slowly varying quantities, we consider first the dynamic equations 

dp Or(x) 
- -  + g cos cot (6) 

dt ~x 

dx p 
- -  = ( 7 )  
dt m 

and transform them to the variables E, (p. The influence of the damping 
and thermal noise will then be accounted for in a standard way. To map 
the variables (p, x) onto the variables (E, ~p), we make use of the solutions 
of Eqs. (6) and (7) in the absence of an external force, d ~ = 0, 

p(t) = p(E, ~o) (8) 

x(t) = x(E, ~o) (9) 
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In other words, x(E, q)) with q ) = c o ( E ) t + c o n s t  describes unperturbed 
motion with the energy E. The explicit expressions for p(E, q~), x(E, q)), and 
co(E) in the first-order approximation at E ~  Vo are given in ref. 10. In 
terms of the functions (8) and (9) the equations for E and ~0 are (11'12) 

dE p(E, ~o) 
dt rn 

- -  g cos cot (10) 

do co(E) - co(E) Ox(E, q~) g d t  = 0E cos cot (11) 

These equations have in their right-hand sides either slowly varying or 
small and rapidly oscillating terms. Keeping in mind that the typical scale 
of time in our problem is of the order of V-l>> co-l, one can average 
Eqs. (10) and (11) over an interval of time V 1>>At>> co-l, getting as a 
result equations without an explicit dependence on time. 

3. THE F O K K E R - P L A N C K  E Q U A T I O N  FOR S L O W  VARIABLES 

To eliminate the fast dependence on time in the Fokker-Planck 
equation (3), we introduce the following Fourier expansions: 

x(E, ~o)= ~ x.(E) sin(rap) 

p(E, q~)= ~ p.(E) cos(n~0) 
n = l  

where the coefficients xn(E) and p~(E) are connected by the relation 

pn(E) = nco(E) xn(E) 

If the external pumping g cos cot is in resonance with the nth harmonic at 
an energy E, 

leo - nco(E)l ~ 09 

one can retain in Eqs. (10) and (11) only resonant terms, so that after the 
substitution 

q)( t ) ~ q)( t ) + cot/n 

and averaging of the equations over a period of pumping oscillation, 
Eqs. (10) and (11 ) yield 
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dE p,(E) g cos no 
dt 2m 

dq) = co(E) - ~- i axe(E) E 
d--7 n - 2 co(E) aE sin nq) 

(12) 

In these equations the small parameters of our problem, the force 
amplitude g and the frequency mismatch co(E)-  co, enter on an equal 
basis. Generalization of these equations to account for the damping and 
thermal noise is straightforward as both these factors are additive with the 
force d ~ cos cot in Eqs. (10) and (11). To proceed further, we write down the 
Fokker-Planck equation in the variables E, q), 

co(E)-co/n~?F g[pn(mE ) OF ~x~(E) c3F 1 aq) + ~ cos q) ~ -  co(E) aE 

= ~mv--5(E)(TC~F+F) (?2F (13) \ ~E +D~~ oq)2 

The right-hand side of this equation accounts for the effects of noise and 
dissipation. It is written taking into account the relations 

( AE ) = - ~mv2( E) 3t 

<3o>=0 

( (AE)2> -- ( ,dE>  2 -- ,/mv2(E) TAt (14) 

((Aq)) 2 ) = 2D~(E) 3t  

<JEJq) > = 0 

where AE and 3q) are variations of E and O over the interval of time 3t, 
y-'>> At >> co-', caused by the damping and thermal noise, 

v-~(E) _ i] ~ d~p v2( E, q)) 

and De(E ) is the angle diffusion coefficient, 

D~o(E)-mTTco2(E)jo ~ \  - ~  } 

To derive the above relations, one needs to consider the averaging of Eqs. 
(10) and (11) with g cos cot substituted by g cos cot-7p[E, co(E) t] + q(t), 
where r/(t) is the Gaussian thermal noise with the correlator 

(r/(t) r/(t ')) = 2myg( t -  t') 
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Below, we shall distinguish between resonance at intermediate energies, 
when mo(/~)=co at a certain energy ~>> T (see the next section), and the 
resonance at the bottom of the well, when Leo- ~o(0)[ ~ ~o (see Section 5). 

4. RESONANCES AT I N T E R M E D I A T E  ENERGIES 

For E>> T, one should neglect the terms with second derivatives in 
Eq. (13) which are small in the parameter TIE ~ 1. Substitution of the 
expansion 

~x e2 F(E,~o)=Fo(E){l+gRe[fl(E)ei~~ (15) 

into the resulting equation, yields the system 

�9 nc~(E) - ~o d f l ( E  ) 1 noo(E) x,~(E) 
-~ f~(E)-m~(E) - 

7 dE 7 2 T  

mrS(E) Tdf2(E) n~(E) dx.(E) Rely(E) 
dE 27 dE 

In all the coefficients of these equations, with the only exception of the 
difference n ~ ( E )  - ~ ,  one can substitute E by the constant ~. With the use 
of the linear expansion 

n ~ ( E )  - eo ~ n o / ( E ) ( E -  F,) 

for the function fl(E), one obtains 

fI{E)-2co'(E) Tw{E) exp[ 2w(L') lf-~oexpk 2w~ ldE' (16) 
where 

m 

w(E) ~ 7mv2(E) 
no'(/~) 

From this expression it follows that fm(E) is concentrated around E = E  
with a half-width of the order wl/2(E). 

It follows then that the neglect of the terms with second derivatives in 
Eq. (13) is only justified for win>> T, in other words, for 

y/~ >> (r/Vo)2 
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This criterion is not extremely severe, since it is compatible with the 
criterion 7/co ~ 1, which provides a condition of high-quality oscillations, 
and with the criterion 7/co ~ T/Vo, under which the results of Section 6 are 
applicable. The relative change of the distribution function at the energies 
above the perturbed region is given by the quantity (1/2) d~2f2(oo ). The 
distribution function 

g2 )] 
F(~) - F0(e) ii + Tf2(m 

for the energies above the perturbed region but below the barrier top, i.e., 
for Vo - e > T, must be used as a boundary condition deep in the well when 
solving the problem of the escapes over the barrier at IV o - e l  ~ T. 
However, it is obvious that the relative change in the decay rate is the same 
as the relative change in the distribution function. For the decay rate one 
then finds 

D(g)  G 2 g2 
D(0) = 1 +-~-f2(oo) = 1 + 2-my2T ~s 

Substitution of expression (16) into the equation for f2(E)  and its 
solution with the boundary condition 

f2(E)=o, ~ -  F_:~> wl/~(~) 

yields finally 

nTmc~ 2 0._~x~(E ) 
~,,(co) 2 T~ ' (E)  ~3L I~(e~ = ~/~ 

(17) 

It is worth noting that the quantity ~(k2) cancels out in the relation for ~ .  
The result obtained coincides with that derived by Larkin and Ovchin- 
nikov (9) for n = 1. Recently, the pumping effects on nonlinear oscillations 
and enhancement of the decay rate were considered by Linqwitz and 
Grabert. (~3) The total contribution of a pumping into the decay rate is 
given by the sum over all resonances, 

x(co)= ~ ~(o) 
n = O  

For the basic resonance (n = 1) near the bottom of the potential well, 
when E ~  V0, one must substitute into Eq. (17) the approximate relation 

x~(E) ~o-(0 5 (1.8) 
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which gives 

Sl(co) = ~ 0[co(0) - co] (19) 

It is assumed here that the frequency co(E) is decreasing with E, so that 
co(E) < co(0). In the next section the rolloff region is considered, where 
Y~(co) is smoothly changing from the value ~/Ivl to a vanishing value in the 
interval of frequencies ]co - co(O)[ ~ ~. 

5. THE ROLLOFF REGION OF THE BASIC R E S O N A N C E  

To investigate the range of frequencies Ico(0)-col ~7,  one has to 
retain all terms in Eq. (13). It is convenient to introduce the function 

F(E, q~) = Fo(~) 1 + ~ Re[f l (e)  ei~] + -~-f2(e) (20) 

where Fo(e ) is given by Eq. (4), and we have introduced the dimensionless 
energy ~ - E/T and dimensionless amplitude of the pumping force, 

g g -  
~(2mr) m 

Averaging of the right-hand side of Eq. (10) with the distribution function 
(20) gives the rate of the energy loss, 

P= (dE/dt) = 7T(g2/2) S(6, v) 

where S(6, v) is the spectrum of absorption, 

S(6, v) = Re e-~fl(e) 5 m & 

The complex function fl(e)  is governed by the equation 

8 ~e2  + (1 - e) --~--t- i6-iv~ 1 

which follows from Eq. (13) for n = 1 with account being taken of Eq. (18) 
and notations (1) and (2). The second-order correction to the distribution 
function obeys the equation 

dfz(e) = 51/2 Re fl(e)  (21) 
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This equation follows from the second-order equation for f2(e), if we drop 
out the term C exp(e) in the right-hand side, which for finite C gives a 
logarithmic divergency off2(e) at e--* 0. The general solution of Eq. (21) is 

fr 
oO 

f2(e) =f2(  oo ) - Re x - l / z f l ( x  ) dx 

Perturbation of the particle distribution by a pumping does not change the 
total number of the particles. Therefore, the integration constant f2(oc) 
must be found from the notmalization condition for the function (20), 
which is equivalent to 

f o  e ~fz(e) de = 0 

The relative change of the distribution function at the energies above 
the perturbed region is given by the quantity (1/2)C2f2(oe). This means 
that we need to calculate the quantity (8) 

Re ( ~  [1 - e x p ( - e ) ]  f l (e)  de f2(o9) J0 1/2 

For the decay rate one then finds 

= g2 ~2 
D(g)  1 + _~_ f 2 ( ~ )  _= 1 + _~__ 2((.(6, v ) 
D(0) 

Substitution of 

reduces the expression for 24#(6, v) to 

Sf(6, v) = Re f o  [1 - e x p ( - e ) ] e  z(e) de 

with the function z(e) obeying the equation 

ez" - ez' + (i6 + 1/2 - ire) z = -~  (22) 

It should be noted that the parameters b and v enter this equation with the 
factor i, whereas the physical quantities are determined by the real part of 
z(e). This means that the functions S(6, v) and :f'(6, v) depend on the 
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combinations 32, v 2, and 3v, in other words, these functions do not change 
by simultaneous alternation of the signs of 3 and v. 

If Ivl ~ 1, the main contribution to o,~(3, v) comes from e ~ 1/Ivl >> 1. 
One must therefore drop the term with second derivative in Eq. (22), 
obtaining the equation 

- - e z '  + (i3 --  ive + 1/2) z = --e (23) 

which can be solved straightforwardly, 

z =  _ei~+l/2e-iw eiV,'e i6  1 / 2  d c t  (24) 

For 2((v, 3) it then follows that 

t"  o v  X - -  i6  - -  1/2 
S ( v ,  6 )=  l i m l m j  - - [ 1 - e  iv~x 1)]dx 

1 x - 1  

where we have interchanged the order of integration. Finally, this equation 
yields 

. ] 7z 1 (25) 
+~s lgn  v - iv]  1 + e x p ( - 2 ~ 6  sign v) 

This expression describes in more detail a narrow region of frequencies 
approximated earlier by the step function (19). 

To solve Eq. (22) in the general case, one has to use a more powerful 
approach. From the condition of boundedness off2(~ ) at e = 0 we conclude 
that z(0) = 0. At small e the function z(e) is expandable in powers of e. In 
this way we obtain the asymptotic behavior of z(e), 

e(1 + 2a) z ~  ~ - j ~ - ~  + a e 2 +  .... e ~ l  

The unknown parameter a has to be chosen in such a way as to kill the 
amplitude A by the growing exponent in the general solution of Eq. (22), 

z ~ A exp(e/2 + pe) + B exp(e/2 - pe)  + 1~iv; e >> 1 (26) 

where the exponential terms describe a solution of the homogeneous 
equation, 

- -  1 P = (4 + iv) 1/2 
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Equation (22) can be solved exactly with the use of the Laplace transfor- 
mation, 

~o(2) = fo ~176 e -x~ -~/2z(e) & 

The functions S(6, v) and S (6 ,  v) in terms of the function ,o(2) are then 
given by 

fo S(6, v) = Re e-~z(e) & = Re ~0(1/2) 

f 1~2 ~(6, v)= ~o(2) d;~ 
- 1 / 2  

The new function ~p(2) obeys the first-order differential equation 

d ( ~ )  q ~  2 1  ~ (22--p2) ~o - i6+ (27) 

The solution of the homogeneous equation is 

q)0(2) -- 22 --  p2 \ ~ - - - ~  ] 

where 

i6 + 1/2 i6 + 1/2 
I~ = 2p (1 + 4iv) 1/2 

This function has two singular points, 2 = _+p, which correspond to 
two exponents in the asymptotics (26). As explained above, we demand the 
coefficient A in Eq. (26) be vanishing. The solution of the inhomogeneous 
equation (27) is then determined by the condition of analyticity of q)(2) at 
the point 2 = p, 

1 d v' 
0(2) -- 22 - p2 \2 + pJ fa \2' -- pJ (2' -}- 1/2) 2 

Now we get the explicit expression for the absorption spectrum (see also 
ref. 14), 

S(6, v )=IT  [1/2--p'~# o ( 2 ' + p y '  d2' 
v ' m k l / - ~ P )  f,/2 \ 2 ' - -p]  (2 '+ 1/2) 2 
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which can be reduced to a simpler form, 

where 

1 1 q- S ~ ns2n 1 
S(6, v) = - Im - -  L v p +  1/2 n - #  n = l  

p -  1/2 (1 +4iv) ~/2- 1 
S ~ - -  

p + 1 / 2  ( l + 4 i v )  ~/2+1 

For small anharmonicity, Iv] ,~ 1, the standard Lorentz expression is 
reproduced, 

2 
S(6, v) 

1 + 462 

The detailed exposition of the derivation for Y(6 ,  v) is given else- 
where. (12) It yields the following result: 

X(b ,  v ) = _ l i m  {~9 [1 i6+1/2 7 

+ 

n = l  

~z 1 4v 
arcsin 

2 Ivl 2v (1 + 16v2) 1/2 
(28) 

where O(x) is the Euler psi function. In the most interesting case of a weak 
anharmonicity of the potential, Ivl ~ 1, the first two terms of the expansion 
in this small parameter are 

7~ 
xf(6, v)~ 

Ivl [1 + exp(-2rcb sign v)] 

where the second term serves as a correction to Eq. (25). In the non- 
resonant region, - b  sign v >> 1, one gets 

1 
x ( ~ ,  v) ~ 
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